Mechanical Ventilation for Patient Transport

Graham Kane B.S., FP-C, CCP-C, P-CC Eagle County Paramedic Services

Objectives

- Respiratory FailureCommon Vent
- Parameters
- Control
- ModesSupport Modes
- Cases
 - Sedation package

Strategies

Non-Invasive Positive

Pressure Ventilation

Trouble Shooting

Ventilator Parameters

- Ventilation parameters to be familiar with:
- V_E Minute Volume (V_T x F) (4-8L/min)
- V_T Tidal Volume 6-10 ml/Kg (IBW)
- F Frequency 8-20 bpm
- I:E Inspiratory to Expiratory Ratio 1:2 1:3
- FiO2 Fraction of Inspired Oxygen 0.21-1.00
- pPlat Plateu pressure < 30 cm H₂O
- PIP Peak Inspiratory Pressure ~20-30 cm H₂O

Respiratory Failure

- 2 Types of Failure:
- Hypercarbic
- Failure to remove CO₂ from the body
- Hypoxic
- Failure to Oxygenate Tissue

Ventilatory Failure

Failing to remove adequate CO₂

- Dx: Respiratory Acidosis specifically pCO₂ > 50mmHg and not improving
- Rx: Increase V_{E} Increase T_{V} and then F

Hypoxic Failure

Failure to Oxygenate the tissue

- Dx: ABGs Respiratory Alkalosis, or Metabolic Acidosis
- Critical Value is a PO₂ < 60mmHg
- Rx: Increasing Mean Airway Pressure
- PEEP
- I:E Ratio modification
- FiO₂ Increase

PEEP

Positive End Expiratory Pressure

- · Retains airway pressure in the lungs at the end of expiration.
- Reduces effective TV
- Treat associated HOTN
- Physiologic is 3-5 cmH₂O, therapeutic is as high as 20 cmH₂O

I:E Ratio

Inspiratory to Expiratory Ratio

- Normal I:E is 1:2 1:3
- Mean Airway Pressure increases as we equalize the I:E
- 1:1 or inverted
- Causes CO₂ retention
- Permissive Hypercapnia
- Keep pH above 7.2

FiO₂

Fraction of Inspired Oxygen

- Raising the FiO₂ is a short term solution
- Oxydative stress, free radical damage in the lungs
- Occurs in the space of hours.
- Target is to Keep FiO2 as low as possible, while maintaining adequate oxygenation.

The Decision to PPV

Pros:

· Cons:

- Airway Control
- Real time assessment of respiratory system
- Invasive Ventilation
- is not intrinsic
- Reduction in Cardiac Output
- VAP

Ventilator Related Lung Injury

- Lung Injury
- Volutrauma
- Barotrauma
- Reduced Cardiac Output
- Alveolar Shear injury

PPV - Breath Mechanics

- Normal Inspiration the diaphragm and intercostals used to power negative pressure
- Overcome resistance to flow created by airways, and lung compliance
 - PIP = airway resistance + lung compliance
- Plat = static measure of compliance, no flow
- Exhalation is passive

pPlat - Measuring...

Expiratory Hold

- High PIP and High pPlat = lung compliance problem
- High PIP and Normal pPlat = Airway flow resistance

PPV - patient workload

- PPV reduces Oxygen demand
- · Patient still needs to perform some work
- Muscle atrophy in hours VIDD
- Avoid prolonged paralysis
- Acute vs. Longer term care strategies involve the patient doing a percentage of the work load

Syncrony

- The vent and the patient will work together if...
- Set vent to the patient
- meet the patient's demand
- bucking? adjust for demand.
- · Ensure adequate sedation and analgesia

Ventilator Control Modes

Volume Control

- TV remains constant regardless of pressure
- Pressure Control
- Breath to preset pressure despite volume
- *Time Cycled
- Approximation of Volume based on Flow x Inspiratory Time

Control Modes

What starts a breath?

- CMV
- A/C
- = IMV
- SIMV

Control Mode Ventilation

CMV

- Preset T_v/PIP x Preset Frequency
- 100% Ventilator Controlled
- · Low tolerance, poor syncrony in awake patients
- Requires large amounts of sedation or paralysis

Assist Control

A/C

- Preset Frequency x Preset Tv/PIP
- · Patient takes additional breath as desired
- Each patient breath is at Preset T_V/PIP

Intermittent Mandatory Ventilation

IMV

- Preset Frequency x Preset T_V/PIP
- Patient can take additional breaths
- Patient breaths are at their own T_V

Syncronized IMV

SIMV

- Preset Frequency x Preset Tv/PIP
- Spontaneous breaths as in IMV
- Vent senses breaths achieves syncrony by:
- Gives full machine breath if patient starts breathing near the next machine breath
- \hfill All other breaths are at the patient's T_V

Support Modes

PEEP

- Positive End Expiratory Pressure
 - Elevates MAP
 - Retains Volume in the airways

Support Modes

Pressure Support

- In SIMV, patient receives additional flow during inspiration on patient initiated breaths
- Eases breathing through the ET tube, dead space, helps achieve higher Tv.
- Range of additional 5-10 cmH₂O

NiPPV

Non Invasive Positive Pressure Techniques

- CPAP
- BPAP, BiPAP (Name Brand) BiLevel, VLPAP, etc.
 IPAP + EPAP

Trouble Shooting

High Pressure Alarms

- Always an Emergency!
- Until proven otherwise
- DOPE or SCOPE
- ConnectionsObstruction

SCOPE:

Suction

- Pnemothorax
- ETT-Displacement

Trouble Shooting

Low Pressure Alarms

- Gas Supply
- Circuit disconnect
- ET-Displacement
- Hypovolemia

Trouble Shooting

Low Oxygenation

- Vent Settings outside parameters
- ET Placement
- Suction
- Pneumothorax
- Pulmonary Embolus

Universal Vent Strategy

- 1. Blood Pressure
- 2. Acid Base Status
- 3. Syncrony
- 4. Titration

Vent Titration

 Oxygen status is controlled by Mean Airway Pressure

PEEP, I:E, FiO2

Ventilation is controlled by VE (Minute Volume)

Freq. and TV

Ve vs. Va

- Making smart adjustments to Ventilation
- Dead space is about 1ml/lb IBW
- Ve = Va + Vd
- Does 12 at 500 = 24 at 250?
- Ve = yes, but Va = no

Using the whole lung

- PIP vs. pPlat
- PIP compliance + resistance to flow
- Measure pPlat in some cases.
- Keep PIP <30-35 cmH2O</p>
- OK to Increase Tv until pressures begin to rise.

Vent Strategies

- Neuromuscular Injuries / Diseases
- Total Support
- Larger TVs
- higher flow rates
- no PEEP

Vent Strategies

- ARDS Lung protective
- pPlat <30 cmH20</p>
- Maximize PEEP to achieve SpO2 >88-95%
- FiO2 < 0.60 Smaller TV (6-8ml/Kg IBW)
- Recruitment / sigh
- PaO2 target 55-80mmHg

Vent Strategies

- COPD
- Apply PEEP
- AC / with paralysis / heavy sedation for vent synchrony
- High flow rates
- Low VE, watch for auto PEEP and give longer E-Time as needed.

Vent Strategies

CHF / AMI

- Proper sedation and analgesia
- Minimize patient work load (Oxygen Demand)
- NPPV for CHF

	Vent	ABG	Chem7
	700ml x 16	pH 7.36	Na 137
• 70 Kg Male w AMI /	FiO2 0.40	PaO2 56	К 3.5
Pulmonary Edema	PEEP 0	PaCO2 38	CI 97
 Intubated, Vent and Labs as 	I:E 1:1.8		TCO2 23
noted	PIP 46 pPlat 40	SaO2 81%	BUN 9.3
		BE -3.2	Cr 0.9
		Temp 36.9 C	Gluc 89

	Vent	ABG	Chem7
	650 x 12	pH 7.10	Na 149
80 Kg Male w CVA /	FiO2 0.40	PaO2 88	K 4.3
Pulmonary Edema	PEEP 0	PaCO2 62	CI 102
ntubated, Vent and Labs as	I:E 1.2:1	HCO3 22	TCO2 22
noted	PIP 42 pPlat 32	SaO2 94%	BUN 11.1
		BE -3.2	Cr 1.2
		Temp 36.9 C	Gluc 102

	Vent	ABG	Chem7
	650 x 12(+ 12-14)	pH 7.13	Na 147
• 75 Kg female w altered LOC /	FiO2 0.30	PaO2 126	K 3.2
acute respiratory distress	PEEP 0	PaCO2 26	CI 107
 Intubated, Vent and Labs as 	I:E 1:1.7	HCO3 12	TCO2 11
noted	PIP 26 pPlat 22	SaO2 98%	BUN 20.1
		Temp 36.8 C	Cr 1.9
			Gluc 397

	Vent	ABG	Chem7
	650 x 18	pH 7.51	Na 139
60 kg female ejected from	FiO2 1.00	PaO2 368	K 4.2
	PEEP 5	PaCO2 28	CI 98
 Intubated, Vent and Labs as noted 	I:E 1:1.5	HCO3 21	TCO2 26
	PIP 49 pPlat 42	SaO2 100%	BUN 10
		Temp 36.2 C	Cr 0.8
			Gluc 90

Sedation Package

- RASS score and gauging sedation quality
- Sedatives

•

- Analgesics
- A1 Sedation Strategy

Richmond Agitation Sedation Scale (RASS) *

Score	Term	Description	
+4	Combative	Overtly combative, violent, immediate danger to staff	
+3	Very agitated	Pulls or removes tube(s) or catheter(s); aggressive	
+2	Agitated	Frequent non-purposeful movement, fights ventilator	
+1	Restless	Anxious but movements not aggressive vigorous	
0	Alert and calm		
-1	Drowsy	Not fully alert, but has sustained awakening]
		(eye-opening/eye contact) to voice (>10 seconds)	Verba
-2	Light sedation	Briefly awakens with eye contact to voice (<10 seconds)	Stimula
-3	Moderate sedation	Movement or eye opening to voice (but no eye contact)	J
-4	Deep sedation	No response to voice, but movement or eye opening	,
		to physical stimulation	Physic Stimula
-5	Unarousable	No response to voice or physical stimulation	Guindia

Hitting the Sweet Spot

- Mistakes of the past lead to delirium
- Profound sedation
- Current Thinking
- RASS -2 to -4
- Maybe deeper for techniques that are less natural (i.e. inverse I:E, High PEEP, etc.)
- Sedation Vacation
- Avoiding Delirium
- 2.5-3.2x the mortality rate
- Other persistent cognitive impairments

All Sedatives can provoke HOTN in the setting of shock.

Use Caution and reduced dosing as needed

Opiates and Benzos

- Fentanyl with Versed is common
- Bolus dose vs. Infusion
- Dosing should be regimented to keep dosing as low as possible.
- Caution with large bolus doses of Benzos if the patient is at risk for HOTN

Propofol / Diprivan

- Lecithin based sedative hypnotic
- Avoid with Soy or egg allergies
- Use strict aseptic technique.
- Only use for 4 hours in the original container, or 2 hours as drawn up

- Propofol produces a dose dependent sedative / hypnotic effect.
- Also is cardio suppressive and produces a dose dependent hypotension in susceptible patients
- Dosing is 2-100 mcg/Kg/Min

Propofol Trivia

- Propofol Infusion Syndrome
- Huge doses (>5mg/Kg/Hr) for periods longer than 48 hours
- Results in a syndrome characterized by characterized by severe metabolic acidosis, hyperkalemia, lipemia, rhabdomyolysis, hepatomegaly, cardiac and renal failure.

Dexmedetomidine

- A2 agonist
 - Causes Sedation with arousability
 - Should be combined with some analgesia
- Dosing is 0.2-0.7 mcg/Kg/Hr
- Can Cause AV and SA nodal blocks, bradycardia, HOTN
- Side effects are most common with initial dosing

Sedation strategies

- A1 Sedation Analgesia
- Avoiding delirium
- Analgesia is given in doses high enough to make being intubated (almost) comfortable / tolerable
- Sedation is then added to a level that allows the patient to achieve the preferred RASS score
- This minimizes the amount of sedative and lowers the risk of delirium.

